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Abstract

The canonical robotic pursuit and evasion (PE)
contest is one where two agents, an evader and a pur-
suer, aim to maximise or minimise contact and dis-
tance of separation between each other. This paper
highlights the need for a greater understanding of such
contests and details a method of developing a statisti-
cal baseline against which the utility of various pursuer
and evader agents can be measured. Also described is
an extensible real world control architecture that al-
lows pursuit and evasion capabilities to be integrated
with other requirements for a robotic agent operating
in the real world. Initial results and future research
directions are also discussed.

1 Introduction

PE scenarios receive a lot of attention in robotics
because they are highly dynamic contests in an ever-
changing environment, that require a tightly coupled
sensory-motor loop to facilitate the necessary real-time
control. As PE experimentation is relatively new to
the field of embodied autonomous robotics, many of
the results reported so far have been independent of
other results, as there is no common benchmarking
system in place. This makes it difficult to assess the
overall relevance of much work. For this reason there
exists a requirement for some standard characterisa-
tion of agent behaviour within PE contests. Also, it is
noticable that the majority of results are based on how
agents behave. It may be significant to classify agents
according to their informational content or internal
workings. To this end some work has been carried out
by Ficici and Pollack [1, 2] using information theo-
retic tools to characterise internal dynamics. Results
reported in this paper are based on their experimental
framework.

Another noticeable trait of some robotic PE re-
search is that it is not grounded in robotics. Sim-
ulations take place in unbounded two-dimensional
planes meaning that the problems inherent in embod-
ied robotics such as sensor and odometry error are
sometimes ignored. It is hoped that by including PE
capabilities in an overall global robot control architec-
ture, this work will have a greater and more relevant
impact than research that is distinct from any robotic
platform.

The next section outlines the motivations for study-
ing PE with section 3 describing the real world control
architecture that has been developed. Section 4 details
the experimental framework and section 5 describes
some preliminary results of these experiments before
the penultimate section mentions possible future re-
search directions before the concluding remarks.

2 Pursuit and Evasion Motivation

There are several reasons why there is currently
much interest and research into PE scenarios not only
within the field of robotics but in other scientific ar-
eas also. In a series of papers by Cliff and Miller
[3, 4, 5] some of these reasons are outlined. They sug-
gest that PE is the perfect domain in which to study
co-evolution where two hostile populations compete in
a co-evolutionary arms race to complexity because it
is the simplest situation in which co-evolution seems
to occur. In addition PE contests are a common set-
ting for protean behaviour. Protean behaviour, also
termed adaptive unpredictability, is often observed in
predator-prey situations in the animal world where
fleeing animals are frequently observed to zig-zag un-
predictably when predators are within extremely close
range. Proteanism serves to confuse competition as it
is the opposite to predictability, and predictability is
a weakness that can be exploited by opponents.



The modelling of PE also has implications for a
range of sciences including Ethology. Studies of ani-
mal behaviour such as Holley’s study of PE habits of
brown hares and foxes [6] would be complemented by
a PE simulation environment where various theories
could be tested and perhaps outcomes explained. En-
dowing robots with the characteristics of specific prey
and predators would allow many more situations to be
observed and manipulated.

From a robotics point of view PE contests are an
interesting case because they require a tight sensory-
motor loop, as the introduction of another agent
makes the environment highly dynamic meaning that
a change of environmental state may require an im-
mediate change of direction or action. While this falls
under the umbrella of reactive control there is also a
requirement for some deliberation as the robot moves.
The robot may have some overall pursuit or evasion
strategy that is too complex to compute in real-time.
This need for both reactive and deliberative control
makes PE an interesting case for the robotics commu-
nity.

The experimental setup described in this paper is
based on research undertaken by Ficici and Pollack
[2]. In this work the authors realise the lack of a rig-
orous metric for PE agent behaviour and use methods
from information theory to characterise this. They de-
velop an artificial recurrent neural network to control
an evolving evader. There are no inputs to the network
with the evader effectively being blind. The only out-
put indicates the angle that the robot is to turn to for
the next move. The evader can be seen to be evolving
as it learns over generations, based on fitness returns.
Using tools from information theory, hand built pur-
suers develop a statistical model of an evader based
on a period of observation of ten thousand time steps.
The model is built using nt* order statistics. The or-
der of a pursuer describes the number of movement
observations made when computing the probability of
sequences of moves occuring. A 0 order pursuer makes
a single observation before recalculating probabilities
while a 10** order pursuer updates probabilities based
on 11 observations.

Simulation takes place in a 2-D plane where both
agents move at a rate of one bodylength, in a particu-
lar direction, per time-step. The pursuer perceives the
evader to be moving in one of eight directions and de-
velops a statistical model approximating the evader’s
movement patterns. The pursuer uses its model to pre-
dict the movement of the evader for a specified number
of time-steps. If the pursuer can get to any point on
the predicted path before the evader, then it will move

directly to that point in order to intercept the evader.
Otherwise the pursuer moves to the first point on the
path.

Fitness for the evader is determined by the average
distance it can maintain between itself and the pursuer
over the course of the game while the pursuer aims to
maximise the number of times it comes within one
body length of the evader.

Results are based on observation of simulated PE
contests and show that higher order pursuers are more
successful, while evaders evolved against higher order
pursuers develop more unpredictable movement pat-
terns. Results based on the accuracy of pursuer mod-
eling capabilities are reported in a later section of this

paper.

3 A Real World Control Architecture

In order to deploy an embodied agent with the abil-
ities to pursue and evade it has been necessary to de-
velop a real world control architecture that takes into
account both the needs of real-time control as well
as time-consuming deliberation. The extensible archi-
tecture diagrammed in figure 1 shows the significant
classes for an architecture that allows robots to build
maps as well as pursue and evade. Client controllers
take readings from the physical robot and pass these
to the serviceControl module. The serviceController
is where the inherent extensibility of the system is re-
alised. It is endowed with different queues for dis-
tinct types of data. This is necessary because map
building and PE contests require the manipulation of
different types of data. Map building work by O’ Sul-
livan [7] has required the use of sonar data while PE
uses data concerning the position and orientation of
robots. The serviceControl module queues data, which
is popped from its queues by the robots client services
that are the classes Mapping and Referee in this case.
The clients can then manipulate the data as they see
fit. The mappingModules build maps useful for navi-
gation while the Pursuer and Evader modules decide
on long-term policies for robot motion. Effectively the
serviceController is a store for data with the client
controllers and mapping and PE services being clients
that register with it.
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Figure 1: Extensible Control Architecture

4 Experimentation
4.1 Setup

For the work described here, the evolving evader
of Ficici and Pollack has been replaced by an evader
that bases its moves on a predefined probability dis-
tribution, which is created using nt* order statistics.
A 0-order evader effectively behaves in a random fash-
ion with actions having an impact for only one time
step into the future, whereas a 7** order evader com-
mits to movements for eight time steps into the future.
The pursuers however, are replicas of those described
above, computing their model of the evader using a
sliding-window mechanism. From the pursuers point
of view it is irrelevant that the neural network gen-
erator has been replaced by a probability distribution
because the evader is only able to observe the move-
ment of the evader and not its decision process.

4.2 Simulation Suite

As already stated these experiments are being de-
ployed in a real world robotic environment. Testing
is taking place using the Saphira/Aria software robot
simulation suite. Testing in an environment such as
this is considered necessary, as much previous simu-
lation in this domain has taken place in unbounded
two-dimensional planes where real world error is not
considered. Also a software simulation suite is suited
to the code-debug-test cycle and there is no chance of
damage to physical robots. One Saphira time step is
100ms in duration. This has lead to some difficulty
because a robot takes more that 100ms to turn and
move in a real world environment as is necessary for
these experiments.
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5 Preliminary Results

Preliminary results regarding the accuracy of pur-
suer prediction capabilities have been recorded. Ex-
periments by Ficici and Pollack have used agents up to
an order of 12 that can move in any one of 8 directions.
It has become apparent that an observational period of
10,000 time steps is not sufficient to give a clear indi-
cation of the probability model of the evader, as a 12t*
order evader would have 8! potential move sequences.
For evaders of higher order it is suggested that an ex-
tended observational period is required. Evaders up
to an order of 7 that can move in 4 directions have
been modelled. Figure 2 shows the total absolute er-
ror for evaders of order 0 to 7. With a maximum of 2,
it is clear that for a 0 order evader, the error rapidly
drops but for evaders of higher order there is a slow
gradual decrease in error. For a 7** order evader the
error drops approximately 12.5%.

Figure 3 shows the Baron cross correlation coeffi-



cient for the eight evaders calculated by:

C ()_<ITT>—<IT><T>
N = o(Tr)o(T)

(1)

where Cn(y) is Baron’s cross correlation coefficient,
I;T is the evaders probability distribution, T is the
pursuers estimation, ¢ is the standard deviation over
the distributions and <> is the average operator. This
results in a value between -1 and 1, with values close
to 1 meaning there is a high correlation between the
two distributions. Figure 3 shows that zero order pur-
suers are able to make a good approximation of evader
characteristics quite rapidly, while 10000 time-steps is
not long enough for higher order pursuers to develop
an accurate model of an evader. Both of these dia-
grams relate to experiments using agents of the same
order.

6 Future Work

Once the information theoretic experiments de-
scribed above have been completed, there appears to
be two promising avenues for future work. The first is
the study of co-evolution using PE as mentioned ear-
lier. The second is the application of Reinforcement
Learning (RL) to PE. Smart and Kaebling [8] suggest
that RL may be well suited to robotics because a RL
robot is given a task specification that it must learn
to accomplish itself rather than instructions on how
to complete the task. This makes sense because au-
tonomous embodied robots are often deployed in un-
predictable environments that can be difficult to model
and specify in advance. Work by Asada et al [9] has
shown that with a suitable descretisation of the state
space, simple robotic tasks are achievable, while Ono
et al [10] show that effective PE is a real possibility
using RL. Future work involves replacing the neural
network controlled evolving evader with a RL agent
and observing how these compare when inserted into
the co-evolutionary framework.

7 Conclusion

Currently there exist few metrics to characterise the
behaviour of pursuit and evasion agents. This paper
has described previous and current investigation into
this area, reasons for simulating PE in robotics and
a real world control architecture that has been devel-
oped for use in PE contests. Clearly there are useful
insights to be gained into co-evolutionary dynamics

among other things from the study and simulation of
PE contests. The introduction of RL into this setting
may provide agents that can learn the best ways to
pursue and evade. This is the subject of future work.
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