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Abstract 
     A wide range of sonar models and map update 
methods have been developed by researchers to create a 
map of an environment using a mobile robot.  However 
these are generally developed in isolation from each 
other, and are rarely compared directly with other map 
building methods.  When they are, either qualitative 
methods are applied, or the comparisons are based on 
different test data, making it problematic to correctly 
assess the merits of the various  map building approaches. 
 
This paper presents a qualitative comparison of two 
sonar models and three mathematical update methods.  
The sonar models are based on models proposed by 
Moravec and Elfes, as well as Konolige.  The 
mathematical map update formulae evaluated include 
methods based on Bayesian probability theory in 
addition to more simplistic methods.  All evaluations are 
performed using identical data in identical environments, 
both in simulation and in real world experiments. 
 
1. Introduction 

     Though robotic map building is a relatively new field, 
a wide variety of solutions to the world-modelling 
problem have been proposed in the literature.  One of the 
most popular sensors used is sonar, due to its low cost 
and the resulting widespread inclusion in many robotic 
systems, its ability to sense a volume, and the speed at 
which sonar information can be incorporated into a world 
model.  One of the most common types of world model 
built with sonars is the occupancy grid, in which an 
environment is discretised into regular shaped areas, 
usually squares, which are arranged in grid formation. 
 
     Although a great deal of research is taking place in 
robotic map building, correctly evaluating the strengths 
or weaknesses of any particular approach is difficult.  
This is due to the fact that work by different researchers 
is rarely directly evaluated with identical data from 
identical environments, which is the only way to reliably 
compare contrasting algorithms.  This paper empirically 
evaluates a variety of mapping paradigms from a number 
of researchers.  These paradigms are comprised  of two 

of the primary issues which must be addressed when 
building an occupancy grid with sonar sensors.   
1. Which sonar model to use. 
2. Which mathematical formula to use to incorporate 

the information from the sonar model with the world 
map. 

 
1.1 Sonar Models 
 
     A sonar model determines how to interpret the range 
reading of a sonar.  Unlike a laser, which has a very 
small aperture and therefore detects a very small area, a 
sonar sound wave spreads outwards from the emitter in a 
cone-like fashion.  An obstacle anywhere in the sonar 
cone can cause a the wave to reflect back to the sensor, 
giving a range reading.  While there is no way to 
determine exactly where in the cone the obstacle that 
caused the reflection is, studies have shown that a sonar 
cone’s energy is stronger nearer to the emitter and 
directly in the direction the emitter is facing.  The places 
in the cone where the energy is stronger are more likely 
to reflect a signal back to the emitter, and therefore a 
sonar model can be developed to estimate the behaviour 
of the sonic beam by assigning a value to each part of the 
sonar cone which represents the probability that the 
obstacle located there.  This paper presents a direct 
comparison of Konolige’s sonar model and the sonar 
model of Moravec and Elfes, using identical data and 
benchmarks. 
 
1.2 Mathematical Map Update Formulae  
 
     The mathematical formulae used to integrate new 
information into a map have been the area of much 
study.  Whereas earlier methods used less 
mathematically robust formulae [1,2], the map building 
community quickly came to the general conclusion that 
formulae based on Bayesian  probability theory led to 
more accurate maps being created [3].  A number of 
different theories based upon Bayesian theory have been 
proposed [4, 5], but as with the sonar models the various 
approaches have never been directly compared using 
identical data.  This paper contrasts three different 
mathematical update methods.  The first is the ad hoc 
method based upon the formulae proposed in [2], the 



second uses the Bayesian update formula as presented in 
[3], and the third is the modified Bayesian update 
formulae using log odds presented in [4]. 
 
2. Sonar Models 

     Two sonar models  are quantitively contrasted in this 
paper.  The first is the two dimensional gaussian sonar 
model proposed by Moravec and Elfes [2]. The second is 
the sonar model designed by Konolige [4], the multiple 
target model, which is based on the normal distribution.  
This paper is not intended to be an in depth discussion of 
these sonar models, for that see the source papers.  
However, an overview of the models is given below.  
Each of these models translates a sonar range reading 
into a set of values which must applied to a set of cells in 
a map.  The mathematical formulae used to perform this 
cell update procedure are discussed in section three. 
 
2.1 Two Dimensional Gaussian Sonar Model 
 
     A sonar beam contains information which pertains to 
an area, rather than a point, regardless of whether it 
strikes an obstacle or not.  The two dimensional gaussian 
(2DG) model represents a sonar range reading as a 
segment, as in Fig 1.  The beam is divided into two parts, 
the freespace area and the surface (obstacle) area.  The 
freespace area is the part of the beam between the sensor 
and the range the obstacle was detected at, i.e. the 
unshaded area in Fig 1.  There is always some 
uncertainty as to the exact distance an obstacle was 
measured at, which lead to the introduction of the value 
ε.  It is also unknown where on the arc the obstacle is. 
For these two reasons, the occupied part of the beam is 
represented by the shaded area in Fig 1, covering the full 
arc of the beam, and wide to represent the range 
uncertainty. 

 
Fig. 1. The two dimensional gaussian sonar model 
 
Fig 1 illustrates Moravec and Elfes’ 1985 model of the 
sonar beam.  In this model,  
• S is the sonar sensor 
• P is the cell being updated 
• ε is the mean sonar deviation error 
• ω  is the beam aperture, the angle at which the beam 

spreads from the sensor S 
• δ is the distance from P to S 

• θ is the angle between the main axis of the beam and 
the line SP. 

• R is the range reading – the distance the sonar beam 
travelled before it bounced off an object 

2.1.1 Freespace Updates with the 2D gaussian sonar 
model 
     A cell which is inside the freespace area of the beam 
has its freespace probability increased with the value 
PE(X,Y), using the formula: PE(X,Y) = Er(δ) * Ea(θ)  
Er(δ) is the estimation of the cell’s freespace based on its 
range from the sensor.  The closer it is to the sensor, the 
more likely that it is not occupied. 

( ) ( ) ( )( )


 −≤≤−−−−=

otherwise
RRRRRE r 0

for1 min
2

minmin εδεδδ

     Ea(θ) is the estimation that a cell is unoccupied based 
on the difference in angle between it and the central 
beam of the sonar, θ.  Cells closer to the central beam of 
the sonar are more strongly updated as freespace than 
cells near the extrmeties of the beam.  

( ) ( ) ( ) ( )22for21 2 ωθωωθθ ≤≤−−=aE  

 
2.1.2 Surface Updates with the 2D gaussian sonar 
model  
     A cell in the surface area of the beam, the shaded area 
in Fig 1, is updated in a similar manner.  The update 
value PO(X,Y), the probability that a cell is occupied is 
calculated using the following formulae: 

PO(X,Y) = Or(δ) * Oa(θ)  
Or(δ) is the probability that the cell is occupied based on 
its range from the sensor.  The closer it is to the range 
reading received, the higher the probability that the cell 
is occupied.  

( ) ( )( ) ( ) ( )εδεεδδ +≤≤−−−= RRforRO r
21  

Oa(θ) is the probability that the cell is occupied based on 
the difference in angle between the obstacle and the 
central beam of the sonar.  The closer the cell is to the 
centre of the beam, the more likely it is that the cell is 
occupied.  

( ) ( ) ( ) ( )22for21 2 ωθωωθθ ≤≤−−=aO  

 
2.2 Multiple Target Sonar Model 
 
     The multiple target model, similar to the 2DG model, 
separates the sonar model into two sections.  Therefore 
both PE(X,Y) and PO(X,Y) must be calculated.  However 
in the Multiple Target Model, both freespace and surface 
readings are calculated using an identical formula.  As 
with the 2DG sonar model, cells closer to the sonar 
sensor are more likely to be unoccupied and cells closer 
to the range reading are more likely to be occupied. Also, 
cells closer to the central beam of the sonar are updated 



more strongly than cells near the extremities of the beam, 
whether it be a freespace or surface update.  
 
On receipt of a sonar range reading, all cells in the beam 
are updated with the value ( )YXP , , using the formula:  
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In the above formula, D is the range reading received by 
the sonar, and Ci states that the cell Ci is occupied. 

( )iCDrp =  is the probability of receiving the range 

reading D given that the cell Ci is occupied.  ri is the 
distance from the sonar to the cell being updated, and F 
is a small constant representing the probability that an 
obstacle could exist at point in the beam other than at the 
range measured, hence the name Multiple Target Model.  
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( )irα  is the attenuation of detection with distance, 
meaning that the farther away an obstacle is, the less 
likely it is to be detected.  For the experiments, 

( ) ( )( )rr 4.0,1min16.0 −=α , giving a maximum 

sonar range of 2.5 metres.  ( )irδ  is the range variance, 
meaning that the farther the obstacle is from the sonar, 
the more the range measured will fluctuate.  In 
experiments this was set to ( ) r..r 015001+=δ , 
which means that there is a fixed error of 1cm, plus 1.5% 
of the range.  For experiments, this was set to 0.05.  As 
in the 2DG sonar model, ? is the difference in angle 
between the cell and the central axis of the sonar beam, 
and ? is half the aperture of the beam. 
 
Formula 8 is a modified version of the normal 

distribution, ( ) ( )22 2

2
1 σµ

σπ
−− xe , meaning that the 

majority of the calculations required for this formula are 
already tabulated, making it quick and simple to 
calculate. 
 

In formula 7, the value ( )iCDrp </  is the probability 

that no range reading less than the one measured D 
would be received if the cell Ci were occupied.  This is 
calculated by integrating the probability of all ranges less 
than D.  
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Due to the fact that ( )iCDrp =  is based on the normal 

distribution, the integration of it is tabulated, and can be 
stored for lookup, making it quick to calculate.  
 
3. Mathematical Map Update Methods 

     Three mathematical methods of integrating the 
value ( )YXP ,  from the sonar model with an occupancy 
grid are examined.  The first is a slightly modified 
version of Moravec and Elfes [2] map update rules, from 
now on referred to as Simple Update Formula.  The 
second is based upon the Bayesian update formula as 
described in [3], from now on referred to as Bayesian 
Update Formula.  The third method is based on the use 
of log odds as proposed by Konolige in [4], referred to as 
Log Update Formula. 
 
3.1 Simple Update Formula 
 
     If the cell at the Cartesian coordinates (x, y) being 
updated is in the freespace area of the sonar beam, the 
value PE(x, y) is generated, which is integrated with the 
prior probability that the cell is unoccupied, 

( )yxEmp , , using the formula.   

( ) ( ) ( ) ( ) ( )yxPyxEmpyxPyxEmpyxEmp EE ,*,,,', −+=
If the cell is in the occupied area of the sonar beam, the 
value ( )yxPO ,  is generated, which is integrated with 

the prior probability that the cell is occupied.  Before that 
can happen however, the update values of all the cells in 
the occupied area of the sonar beam are normalised to 
one.  This accounts for the fact that it is assumed that 
only a single cell on the arc of the beam caused the sound 
wave to reflect, therefore one cell should have its 
probability of occupancy set to one.  However, as it is 
not possible to determine which cell caused the 
reflection, the probability of one is divided amongst all 
the cells in a weighted distribution.  

( ) ( ) ( )∑= yxPyxPyxP OOO ,,,  

The second step integrates ( )yxPO ,  with the prior 

probability that the cell is occupied, ( )yxOcc ,  to give a 
posterior probability that the cell is occupied, 

( )', yxOcc . 
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Finally, the value stored in the cell is decided based on 
which value is greater, ( )yxEmp ,  or ( )yxOcc , . 
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3.2 Bayesian Update Formula 
 
     This Bayesian Update Formula makes the assumption 
that the probability of a cell being occupied is one minus 
the probability of it being empty, and vice-versa, 
therefore ( ) ( ) ( )yxMapyxEmpyxOcc ,,1, =−= .  
If  the cell is in the freespace area of the sonar beam, the 
value ( )yxPE ,  is generated.   

The first step is to translate ( )yxPE ,  so that rather than 
representing the probability that a cell is unoccupied 
using number is the range [0..1], the range of numbers 
[0..0.5] is used, where zero means that the cell is 
definitely empty, and 0.5 means there is no information 
about the cell.  

( ) ( )( ) 2,1', yxPyxP EE −=  

( )yxPE ,  is then integrated with the prior value of the 
cell using Formula 15, the Bayesian probabilistic update 
formula.  
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A similar procedure is performed on an update on a cell 
in the occupied area of the beam.  First ( )yxPO ,  is 

translated from the range [0..1] to [0.5..1], where 0.5 
represents a lack of knowledge about the cell, and 1 
means the cell is definitely occupied.  

( ) ( ) 2,5.0', yxPyxP OO +=  
Finally the map is updated with the new value.  
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3.3 Log Update Method 
 
     The Log Update Method uses a multiplication to 
integrate new values from the sonar model with a priori 
informa tion, and then combines the probabilities of the 
cell being occupied and empty using logarithms and 
addition.  Because of the use of multiplication, it is 
required for ( )yxPO ,  to be translated to a number 

greater than one, and for ( )yxPE ,  to be translated in a 
similar manner to a number less than one.  This ensures 
that a surface reading causes the overall value to rise, 
while a freespace reading causes it to fall.  

( ) ( )yxPyxP EE ,1, −=  

( ) ( )yxPyxP OO ,1, +=  

( )yxPE ,  and ( )yxPO ,  are then integrated with the 

prior information using multiplication.  
( ) ( ) ( )yxPyxEmpyxEmp E ,*,', =  

( ) ( ) ( )yxPyxOccyxOcc O ,*,', =  

Finally, the freespace and surface values are combined to 
form the map using logarithms and addition.  

( ) ( )( ) ( )( )yxOccyxEmpyxMap ,log*,log, 1010=
Unlike the previous two mathematical update methods, 
the Log Update Method does not map values into a range 
[0..1].  For this reason a cut off value must be set at 
which it can be said that a cell is definitely occupied, and 
another value at which the cell is definitely unoccupied.  
In the experimental results presented in section six, a 
range of [-2..+2] was used. 
 
4. Benchmarking Techniques Used 

A suite of benchmarking techniques published in [6,7] 
have been applied to 126 maps generated with all sonar 
models and mathematical update methods.  Both 
simulated and in real world environments were utilised.  
Each of the maps generated in the course of 
experimentation are compared against hand drawn ideal 
maps of the environment the robot traversed.  A 
complete listing of all environments, benchmarks, and 
procedures followed can be obtained from [7].  All sonar 
models and mathematical methods were tested using 
identical sensor and motor data to facilitate an accurate 
comparison.  
The four tests are as follows: 
1. Correlation.  A higher percentage indicates a greater 

degree of similarity between the maps[8]. 
2. Map Score.  A technique proposed in [5] which 

calculates the difference between two maps.  The 
lower the percentage difference, the greater the 
similarity between the two maps. 

3. Map Score of Occupied Cells.  Similar to the 
previous benchmark, but only tests those cells that 
are occupied, i.e. >0.5 in one or both of the maps 
being tested 

4. Path Comparison For False Positive Paths.  
Calculates the percentage of paths in the map which 
would cause a robot to collide with an obstacle.  The 
lower the percentage, the fewer paths would cause a 
collision, and therefore the better the map. 

 

5. Experimental Results 

5.1 Sonar Model Experimentation Results 

 Correlation Map 
Score 

Map 
Score 

Occupied 
Cells 

Path 
Comparison 

False 
Positives  

2DG 
Model 

53.11% 16.50% 11.65% 64.20% 

Multiple 
Target 
Model 

63.33% 13.50% 10.48% 42.70% 



5.2 Mathematical Map Update Formulae Results 

 Correlation Map 
Score 

Map 
Score 

Occupied 
Cells 

Path 
Comparison 

False 
Positives  

Simple 
Update 

56.70% 16.57% 11.11% 62.54% 

Bayesian 
Update 

55.34% 16.44 
% 

12.19% 65.85% 

Log 
Update 

63.33% 13.50% 10.48% 42.69% 

 
6. Discussion 

When comparing the results of the two sonar models, the 
Multiple Target Model consistently performed better 
than the Two Dimensional Gaussian Model.  The 
Correlation and Path Comparison benchmarks showed 
the most improvement. The Correlation benchmark 
shows the maps built more than a 10% increase in 
similarity with the ideal hand-drawn map.  The Path 
Comparison benchmark shows the most dramatic 
improvement, with 22% fewer paths leading to collision 
with an obstacle.  These results clearly demonstrate that 
the Multiple Target Model performs significantly better 
than the Two Dimensional Gaussian Model.  This is 
largely due to the fact that it updates the map in much 
smaller increments than the 2DG model.  Whereas the 
2DG model can cause a cell to go from a freespace 
probability of zero to a probability of one with just two 
or three range readings, the Multiple Target Model 
updates the map much more gradually, usually requiring 
twenty or thirty freespace readings at a cell before its 
freespace probability converges to its maximum value.  
This more gradual update approach means the map is 
less affected by erroneous sonar readings, as a single 
noisy reading does not affect the map to a large degree, 
and can be corrected later by accurate range readings. 
 
The results for the mathematical map update methods are 
not quite as clear as those of the sonar models.  The 
Simple Update and Bayesian Update methods perform 
more or less identically in the benchmarks, despite the 
fact that they use considerably different mathematics to 
update the map.   While the Bayesian Update method is 
more mathematically robust than the Simple Update, 
using sound principles from probability theory, it offers 
no advantage over the Simple Update other than 
mathematical elegance.  The Log Update, on the other 
hand, performs considerably better than both other 
update methods, with an 8% increase in Correlation, and 
a huge improvement of 20% in the Path Comparison 
benchmark.  This result is highly dependant on the 
Min/Max threshold values chosen for the map however.  
If a higher maximum value is chosen then obstacles will 

not be recognised as quickly, whereas if a lower 
maximum value is used, then surface areas may be given 
over generous updates.  The same holds true for the 
minimum threshold.  It is possible that a Min/Max 
threshold that results in acceptable performance in one 
environment may not perform as well is another 
environment with different levels of noise.  That being 
said however, if a method exists to estimate the noisiness 
of an environment, the Multiple Target Model can be 
tuned for that environment, making it a highly adaptable 
sonar model. 
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